vvvvviii in Kodoniy ioonii

Question	Answer	Marks	Guidance
1(a)(i)	proton acceptor;		A alternative words to 'acceptor' e.g. 'receiver' I references to pH
	M2 does not accept (protons) readily OR less able to accept protons (than strong bases);	2	A 'hydrogen ion' or 'H ⁺ ' for proton I accepts fewer/less protons
(a)(ii)	M1 same concentration of both bases;		
	M2 measure their pH;		A suitable method e.g. universal indicator or pH paper or pH meter I litmus or methyl orange or phenolphthalein I titration methods for M2 and M3
	M3 the higher pH is the stronger base;	3	A suitable colours of both weak strong bases e.g. ethylamine is (greeny)blue, NaOH is darker blue/purple A alternative methods for M2 and M3
			e.g. measure conductivity (M2) and high conductivity is the stronger base (M3) e.g.add aluminium/A1 (M2) and stronger base gives faster rate of effervescence/more fizzing/more bubbling (M3)
(b)(i)	$_3\text{CH}_2\text{NH}_2$ + $_4\text{PSO}_4$ \rightarrow (CH $_3\text{CH}_2\text{NH}_3$) $_2$ SO $_4$ species; balancing;		A multiples I state symbols A one mark for correct product
	the salt is ethylammonium sulfate;	3	A close spellings A diethylammonium sulfate

vvvvviiiiiko a o i i i y i o o i i i

Question	Answer	Marks	Guidance
(b)(ii)	sodium hydroxide / calcium hydroxide / NaOH / Ca(OH) ₂ ;	1	any Group 1 or Group 2 hydroxide or oxide
(c)(i)	Any two from: (particles move in) random motion;		
	(particles) collide;		A alternative phrases for collide
	(particles) move from a region of high concentration to low concentration;	2	A down a concentration gradient
6(c)(ii)	M2 it has a lower (relative) molecular mass (than HBr); M3 ethylamine diffuses faster (than HBr);	3	A ethylamine is less dense A ethylamine is a lighter molecule but I 'ethylamine is lighter' I ethylamine is a smaller molecule A ethylamine molecules or particles move faster A ECF for M2 and M3 if A is given e.g. HBr diffuses faster for M3 because it is a lighter molecule for M2 A ECF for M2 if B is given e.g. they diffuse at same rate for M3 because molecules weigh the same for M2

[1]

[1]

2	(a	(i)	two atoms per molecule	[1]
		(ii)	7e in outer shell or level / same number of outer electrons / need to gain one electron	[1]

(iii) different number of energy levels / different number of electrons

(iv)

halogen	solid, liquid or gas at room temperature	colour	
chlorine	gas	gas yellow / yellow green / green	
bromine	liquid	<u>brown</u> / red- <u>brown</u> / orange- <u>brown</u> not: red / orange	
iodine	solid	black / grey / silver-grey / purple / violet NOT : blue-black	

NOTE: one mark for each vertical column [2]

(b)	correct formula, AsF ₃	[1]
` ,	3nbps and 1bp around all 3 fluorine atoms	[1]
	3bps and 1nbp around arsenic atom	[1]

(c) (increased) light increases / causes forward reaction / light causes AgCl reacts with CuCl [1] (increased) light increases the amount of silver (and so darkens glass) [1] decrease in light reverses reaction / uses up silver / silver reacts (and so reduces darkness)[1]

[Total: 11]

3	(a	(i)	photosynthesis or a photochemical reaction not an example, question requires a process not devices which convert light into electricity]
		(ii)	cell accept battery not generator]
	(b)	(i)	correct formula [1]
			cond following marks conditional on correct formula If covalent mark 1 only correct charges 6x and 2o around anion do NOT penalise for incorrect coding ignore electrons around potassium	
		(ii)	correct formula [1]
			If ionic mark 1 only cond 2 bp and 2 nbp around selenium 1 bp and 3 nbp around both chlorine atoms [1	
		(iii)	the ionic compound higher melting point / boiling point / less volatile conducts when molten or aqueous, covalent compound does not is soluble in water, covalent is not / ionic insoluble in organic solvents, covalent soluble in organic solvents harder any two [2 note there has to be comparison between the ionic compound and the covaler compound not density	2]
	(c)		alkali	_
		acc	epts a proton epts hydrogen ion / H ⁺ only [1] on and H ⁺ [2]	-]

4		op and 1nbp around phosphorus op and 3nbp around each chlorine	[1] [1]
	(b) (i)	$PCl_3 + 3H_2O \rightarrow 3HCl + H_3PO_3$	[1]
	(ii)	acid solutions same concentration measure pH/pH paper/Universal indicator hydrochloric acid lower pH	[1] [1] [1]
		colours of Universal indicator can be given as red <orange<yellow <math="" as="" hcl="" ignore="" is="" long="" lower="" ph="" precise="" than="" values="">H_3PO_3</orange<yellow>	
		OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series but not all magnesium	[1] bove
		calcium carbonate or any insoluble carbonate hydrochloric acid react faster/shorter time	[1] [1]
		OR acid solutions same concentration measure electrical conductivity hydrochloric acid better conductor/bulb brighter	[1] [1] [1]
		OR acid solutions same concentration add sodium thiosulphate hydrochloric acid forms precipitate faster/less time	[1] [1] [1]
	(iii)	sodium hydroxide/sodium carbonate titration cond on correct reagent second mark scores for mention of titration /burette/pipette/indicator. experimental detail not required	[1] [1]
		any named soluble calcium salt e.g. calcium chloride/nitrate/hydroxide	[1]
		nrecinitation/filter/decant/centrifuge	

5 (a)(i)	boiling	[1]	
(ii)	lower temperature or over temperature ran	[1]	
(iii)	direct continuation of	[1]	
(iv)	close or touching cannot move apart	far apart fast and random can move apart	[2] [1] [2]
(b)(i)	calcium ethanoate + hydrogen		[1]
(ii)	zinc oxide or hydroxide		[1]
(c)	CH ₃ COOH + NaOH \rightleftharpoons CH ₃ COONa + H ₂ O reactants [1] products [1]		[2]
			TOTAL - 40